A reneszánsz fizikája – betekintés és kitekintés

Kovács László
dr. habil., főiskolai tanár, NYME Fizika Tanszék
Reneszánsz év
fizikatörténet, kísérleti fizika, Accademia del Cimento, Benedetti, della Porta, Simon Stevin, Niccolò Tartaglia
szóelválasztás

A fizikatörténeti dolgozatoknál azt kérem tanítványaimtól, hogy legyen munkájukban mindig valami eredeti: saját vélemény vagy összehasonlítás. Elvárom, hogy legyen az írásokban levéltárban talált adat, olyan leírás, amely eddig még nem jelent meg nyomtatásban vagy az interneten; olyan tény, amely régi folyóiratokban, évkönyvekben eldugottan szerepel. Most szégyenkeznem kell, mert a reneszánsz fizikájával kapcsolatban én magam nem tudok saját munkát felmutatni. Láttam ugyan a Loire menti Amboise-ban a Leonardo da Vinci sírját őrző St. Hubertus-kápolnát, de nem jártam szülőfalujában, a Vinci melletti Anchianóban. Láttam Oxfordban a Sheldonian melletti múzeumban Galileo Galilei távcsövét, láttam síremlékét Firenzében a Santa Crocéban, de nem volt türelmem végigolvasni a Discorsit. Nem fényképeztem le Simon Stevin szobrát a róla elnevezett téren, szülővárosában, a hollandiai Bruges-ben, de még csak fényképet sem találtam az Eugen Simonis alkotta szoborról. Nem ellenőriztem személyes megtekintéssel, hogy legenda-e vagy valóság: Stevin sírkövére a lejtőre helyezett gyöngysort – meglátásának zseniális ábrázolását – vésték. Nem volt a kezemben Giambattista della Porta 1558-tól kiadott húsz könyvéből, a Magiae Naturalisból a 8. könyv, amely a fizikai kísérletekről szól, és az angol fordítást, a Natural Magicket is csak az interneten tudtam megnézni.

Így csupán annak felsorolása következik, hogy mit találtam kedvenc forrásaimban. Összességében azt állapítottam meg, hogy a reneszánsz idején nem végeztek korszakalkotó kísérleteket, nem volt átfogó elmélet, de megjelentek ezek csírái. A fizika vándorútján nagyon messze van még Eötvös Loránd és Albert Einstein, Michael Faraday és James Maxwell, de közel vagyunk már Galileihez és Isaac Newtonhoz.

A harmónia születése

Fizikatörténeti forrásaimban a kezdet és a vég A fizika kultúrtörténete. Ebben a páratlan műben Simonyi Károly „modern tudománytörténeti munkák” alapján felsorolja, hogy a szerzők miért ítélik el a 16. század tudományát. Túlzottan építettek az antik tudományra, ez lekötötte a legkiválóbb elmék szellemi energiáit. Előtérbe helyezték a filológusokat, megvetették a közvetlen múlt eredményeit. A százéves angol–francia háború akadályozta a késő középkor két tudományos központjában, Oxfordban és Párizsban a szellemi élet fejlődését. A reneszánsz pozitív vonásai Simonyi olvasatában a következők. Megbízható, hű fordítások alapján hozzáférhetővé vált az „antik tudáskincs”. Túl tudtak lépni az ókori hagyományokon, megtették az első lépéseket a teljes szellemi függetlenség felé. A reformáció megmutatta, hogy még a hit kérdéseiről is lehet vitatkozni. Végül nagyon fontos, hogy a kibontakozó, csodálatos reneszánsz művészet természettudományos ismereteket követelt: optikát, botanikát, anatómiát, statikát.

Máig ható élményem az 1966-os, első olaszországi utam. Firenzében az Uffizi Képtárban az idegenvezető felhívta a figyelmünket a természeti háttérre és az emberábrázolásoknál a helyes arányok megjelenésére. Ekkor szerettem bele Michelangelo szobraiba. Ő a márvány holt anyagában ábrázolt alakot élővé tudta tenni. A firenzei Akadémia kiállítótermében a Dávidhoz vezető út jobb oldalán a haldokló rabszolga karja már élettelenül csüng, mégis az ember önkéntelenül oda akar nyúlni, hogy segítsen. A fiatalkori Pietán Mária ölében a holt Krisztus megtört vonalban fekszik, mintha nem akarna teljes súlyával édesanyjára nehezedni. Az épületet, ahova ezt a szobrot tették, szintén Michelangelo tervezte. Igaz, ő még a legtökéletesebb mértani testnek, gömbnek (félgömbhéjnak) akarta kívülről is látni a Szent Péter bazilika kupoláját, olyannak, amilyennek a példaképül vett firenzei Filippo Brunelleschi tervezte dóm kupolája belülről látszik. Utódai a kor ízlésének megfelelően nyújtották meg azt.

Furcsának tűnhet, hogy „fizika” címszó alatt ilyen dolgokról írok, ám a reneszánsz lényegéhez tartozik, hogy tökéletes volt a harmónia az ember, a természet és az ember alkotásai közt. Azért tudott Leonardo, Michelangelo, Stevin, Garay, Porta az embereket jól szolgáló, szép eszközöket, épületeket tervezni, mert voltak művészi adottságaik és egységben látták a teljes emberi kultúrát, ismerték, tisztelték magát az Embert. Napjaink kiemelkedő egyéniségei közül éppen Simonyi Károly juthat eszünkbe. Ő harmóniát teremtett a reál és a humán tudományok közt: a fizika kultúrtörténetét írta meg. Ő azért tudott – szemben nagyon sok kollégájával – kiváló egyetemi tankönyveket írni, mert ismerte a hallgatók lelkivilágát, tudásszintjét. Ellenpéldaként a számítógépes programok szerzőinek nagy részét említhetnénk. Nemhogy az emberi lelket nem ismerik, de még pedagógiai érzékük sincs, és hiányoznak alapvető didaktikai ismereteik.

Nagyon jó lenne, ha a reneszánsz éve kapcsán nemcsak emlékeznénk, hanem tanulnánk is az akkori emberektől. Ismét Michelangelóról írok. Ő maga tervezte a Sixtusi Kápolna mennyezetfreskói elkészítéséhez az állványzatot. Gondos volt a kivitelezés is, így minden rendben folyt. Ezzel szemben nemrég meghalt egy magyar művész-restaurátornő azért, mert a templomban összeomlott alatta az állványzat.

Amikor megcsodáltam a pompás görög szobrokat a Vatikáni Múzeumban (azután Berlinben, Párizsban, Londonban majd a maradékot Athénban) és a falfestményeket Pompeiben: elgondolkodtam azon, hogy hogyan lehetett az emberi testnek ezt az erőteljes, kifejező ábrázolását elfelejteni. Én a vallást okolom ezért. Az emberek figyelmét a földöntúlira, az ég felé kellett terelni, hogy békésen dolgozzanak, ne figyeljenek a földi társadalmi viszonyokra, ne lázongjanak. John D. Bernal, a neves ír kristályfizikus, Cambridge-i majd londoni professzor fizikatörténeti művében (1977) kiemeli, hogy a középkor „előkészítette a tudományos forradalmat”. Azt fejtegeti, hogy

sötét középkorról beszélni földrajzilag meghatározott, nagyon egyoldalú nézet. […] a civilizációnak mint egységes egésznek a történetében nem következett be törés, csupán a világnak abban a részében tapasztalható ez, amelyet jól ismerünk. Ezért számunkra sokkal nagyobbnak tűnik ez a törés, mint amekkora valójában volt.

Forrásaim útmutatása

Simonyi Károly a reneszánsz eredmények közül a következőket emeli ki. Domenico de Soto a szabadesést egyenletesen változó mozgásnak tekintette. Niccolò Fontana Tartaglia a lövedék pályáját három szakaszra bontotta. Giovanni Battista Benedetti a szabadesésre vonatkozó gondolatkísérletet, Stevin és társa tényleges ejtési kísérletet végzett. Isaac Beeckman elméleti úton levezette, hogy a szabadon eső test sebessége arányos az idővel. Juan Bautista Villalpando a Földre állított test feldőlésével foglalkozott. Gerhard Kremer (Mercator) jó térképeket készített. Albrecht Dürer megalapozta az ábrázoló geometria szemléletét. Az önálló alfejezetben szerepeltetett Leonardo összekapcsolta az egyenletesen változó mozgást és a szabadesést, vizsgálta a lejtőn való mozgást.

Fizikatörténeti bibliám Edmund Hoppe Geschichte der Physik című műve (1926). Természetesen Hoppe is ír Benedettiről, Stevinről, Leonardóról. Újdonság nála, hogy a hőtani fejezetben szerepeltet külön reneszánsz kori részt, és itt ismét Leonardóról majd Portáról és Garayról ír.

Megkaptam a vezérfonalat, és a fent említett tudósok életútja valamint alkotásai után kutattam. Nagy segítségemre volt még René Dugas A History of Mechanics című műve (1988) és az internet.

Simon Stevin

A reneszánsz ember sokoldalúságának kiváló példája. Szűkszavúan matematikusnak és mérnöknek nevezik, de – továbbra is mai fogalmakat használva – fizikus, csillagász, geográfus, nyelvújító, zeneteoretikus, tanár és közgazdász is volt. Születésének évét (1548/49) és halálának helyét (Hága vagy Leiden, 1620) nem ismerjük pontosan. Maurice van Nassau herceg tanácsadója volt. Ő csinált belőle köztisztviselőt: többek közt szállásmestert a spanyolok ellen folytatott függetlenségi háborúban.

Matematikai képességeit számos területen alkalmazta. Kezdjük a zenével! Galilei apjának, Vincenzo Galileinek a hatására 1585-ben – a kínai Csu Cai-jüvel1 egy időben, de tőle függetlenül – megalkotta a billentyűs hangszerek egyenlő közű hangolásának elméletét. Igazán csak az énekesek tudnak egy dallamot a harmonikus „hangolásnak” megfelelően megszólaltatni, azaz úgy énekelni, hogy a hangközök hangjaihoz tartozó frekvenciák hányadosa egész szám legyen, például kisszekund esetén 25/24 = 1,0417. A vonós hangszerek hangolása a kvintekre épül. A billentyűsök játszanak összhangzattani hangzás szempontjából a legrosszabbul, mert náluk a kromatikus skálában (ahol az összes félhangot játsszuk le egymás után) bármely két egymásra következő hanghoz tartozó frekvenciák hányadosa azonos: tizenkettedik gyök 2, azaz közelítőleg 1,0594630944. Ezt találta ki Csu Cai-jü és Stevin. (Házi feladat nem zenészeknek: miért éppen tizenkettedik gyök?). Az egyenlő közű hangolás (zenei szakszóval: egyenletes temperálású hangolás) előnye az, hogy egy dallam bármely hangnemben azonosan jól (illetve a „vájt fülűek” számára azonosan rosszul) hangzik. Tudtam én gimnazista koromban, hogy az egyenlő közű hangolást Johann Sebastian Bach (1685–1750) is népszerűsítette, de hogy ezt a temperálást egy fizikus találta ki, azt most olvastam a neten. Támadt is egy ötletem: ha én énekes lennék, akkor az engem kísérő zongorát D-dúrban harmonikusan hangoltatnám, s minden dúr dallamot csak ebben a hangnemben énekelnék.

  • 1A különböző latin betűs átírások szerint: Chu Tsai-Yu, illetve Zhu Zaiyu

Stevin fogalmazta meg azt a hidrosztatikai tényt, hogy az edény aljára a benne levő folyadék által kifejtett nyomóerő csak az edény aljának területétől és a felette levő folyadékoszlop magasságától függ, az edény alakjától független. Ezt hidrosztatikai paradoxonnak mondják, megzavarva ezzel a tizenévesek fejét: miért paradoxon, ha ilyen szép a törvény! (Ha picit belegondolunk, láthatjuk, hogy a háttérben meghúzódik az erők felbontása és összetevése, amit majd a lejtőre helyezett testeknél is használ.) Blaise Pascal (1623–1662) kieszelt egy pompás kísérletet a hidrosztatikai paradoxon szemléltetésére.

100 fontnyi teherre van szükség ahhoz, hogy egy uncia víznek az edény aljára gyakorolt nyomását kiegyensúlyozzák, a kísérlet során a víz megfagy, és ezután elegendő egy uncia teher. Pascal sajátos pedagógiai érzékkel rendelkezett.

Gingyikin, 2003

Simonyi Károly fizikatörténeti könyvéből tudtam meg, hogy Kosztolányi Dezső Pascalnak tulajdonítja a világirodalom legszebb mondatát:

A végtelen tér örök csöndje megrémít.

Ezután elolvastam a Gondolatokat, s még néhány más szépirodalmi Pascal-művet.

Visszatérve Stevinre és a folyadékokra: Stevin tervezett vízimalmot is. Az árapály-jelenséget a Hold vonzásával magyarázta. „Földi jachtjával” vízparton is tudott vitorlázni. 1600 körül huszonhárom társával Scheveningen és Petten között a tengerparti fövenyen csupán a széltől hajtva gyorsabban haladtak, mintha lovakkal húzatták volna magukat.

Stevin 1586-ban megjelent De Beghinselen der Weeghconst című könyvében leírta, hogy társával 30 láb magasságból egyszerre ejtettek le két golyót. (Nekünk nehéz ugyan megértenünk a flamand szöveget, de dicséretes, hogy anyanyelvén s nem latinul publikált!) A golyók egy időben koppantak a földre helyezett deszkán. Csupán egy koppanás hallatszott akkor is, amikor a két tömör ólomgolyó egyike tízszer akkora térfogatú volt, mint a másik, és akkor is, amikor két azonos térfogatú golyót ejtettek, de olyanokat, amelyeknek súlya egy a tízhez arányban állt egymással.

Lehet, hogy nem tudjuk megnézni a gyöngysorábrázolást Stevin sírján, de a most említett, 1586-os könyvének címlapjára biztos, hogy ezt a rajzot tette Megmutatott ezzel sok dolgot. Megmutatta, hogy kiváló tanár. (Nem tudom, hogy milyen szakon fejezte be 1683-ban a Leideni Egyetemet, de úgy tudom, hogy később nem tanított). Nincs erővektor, vektorfelbontás (ezt ő vezette be az erők összetevésének megfordításaként), nem ír fel arányokat, trigonometrikus összefüggést, mégis – vagy talán épp ezért – azonnal látjuk, hogy a gyöngyszemek súlyának lejtővel párhuzamos összetevője arányos a lejtő hosszával. Ugyanehhez az ábrához fűzött magyarázatával, a virtuális munka elvének felhasználásával bizonyítja, hogy nem létezhet örökmozgó.

Stevin javaslatára szerveztek mérnöki kart a Leideni Egyetemen. Itt az első professzor az a Ludolph van Ceulen (1540–1610) volt, aki 35 tizedesjegyig kiszámította a π értékét. (Ezért is hivatkoznak a kör kerületének és átmérőjének hányadosára Ludolph-féle számként.) Ezt a 35 jegyet meg is nézhetjük 2000. július 5. óta a Pieterskerkben (a Péter-templomban), ugyanis rekonstruálták a matematikus 19. század elején eltűnt sírkövét.

Stevin emlékét sokoldalúan ápolják a Leideni Műegyetemen. A róla elnevezett egyesület működőképesen megépítette, s feltalálójáról nevezte el a földi jachtot.

Simon Stevin
A hidrosztatikai paradoxon ábrája
Az erőháromszög rajza
A De Beghinselen der Weeghconst címlapja a gyöngysorábrázolással

Niccolò Fontana Tartaglia

Ő, a „dadogós” (tartaglia) alapvetően matematikus;2 ilyen szemlélettel foglalkozott ballisztikával, így került be a fizikusok látókörébe. Hadmérnöknek és földmérőnek is tekintik; szerkesztett lőtáblákat, foglalkozott a lejtőn álló testek egyensúlyával, a szabadeséssel. Tervezett erődítményeket és könnyebb használhatóságot biztosító tokot az iránytű számára. Az ő születési éve sem ismert pontosan: Bresciában született 1499-ben vagy 1500-ban. Halálának helyét és idejét ismerjük: Velence, 1557. december 13.

Quesiti et Inventioni diverse (Különféle feladványok és megoldások) (Velence, 1546) című művének ajánlásában szépen fogalmazza meg a reneszánsz már taglalt lényegét:

Kiket új dolgok égő vágya izgat
Mikről nem tudtak Platón sem Plotinosz
Sem semmi régi görögök s latinok
S csak Munka, Mérés, Ész hozott világra.

Vekerdi, 2000

Alapvetően autodidakta volt: picit tanult otthon és Páduában. Később viszont matematikát tanított Veronában és Velencében.

Értetlenül állok az előtt a tény előtt, hogy aki olyan kiváló matematikus, hogy általános eljárást talált a harmad- és a negyedfokú egyenlet megoldására, hogyan tudott a hajításokkal kapcsolatban megmaradni Arisztotelész és francia követőinek befolyása alatt, az impetuselméletnél. Hogyan állíthatta az 1537-ben megjelent Nova Scientia című könyvében azt, hogy a kilőtt ágyúgolyó először egyenes vonalban, majd körpályán, végül függőlegesen lefelé halad? Picit meglepett, hogy Simonyi Károly is ebből a könyvből vette a három szakaszra osztott ferde hajítás illusztrációját. Ugyanis az említett, 1546-os Tartaglia-könyvben már az áll, hogy a pálya egyetlen része sem egyenes. (Sajnos ezen állítást nem tudtam megnézni a Pierluigi Pizzamiglio, az Università Cattolica del Sacro Cuore matematikaprofesszora által készített CD-n, mert azt a kézirat leadásáig nem kaptam meg, de hiszek Gingyikinnek, akinél a fenti sorokat olvastam, ő megbízható szerző. Pizzamiglio, aki digitalizálta Tartaglia összes írását, nekem küldött elektronikus üzenetében megerősítette, hogy Tartaglia nem végzett kísérleteket, matematikai modell alapján dolgozott.) Furcsának érzem, hogy 1537-ben Tartaglia nem figyelte meg egy eldobott kő pályáját. Különösen az zavar, hogy a végső szakaszt függőlegesnek tekintette. Kirohantam a szobából, s hogy korhű legyek, elmentem a vízcsapra szerelt öntözőcső mellett, egy vödör vízbe szívócsövet tettem, s figyeltem a kifolyó víz pályáját. Valóban egyenesnek tűnhet a kezdő szakasz, rá lehet fogni az utána következő részre, hogy kör, de semmilyen szögnél nem ment a víz az utolsó szakasznál függőlegesen. Lehet, hogy ez túl távoli analógia: vizet vizsgálni ágyúgolyó helyett, ezért a továbbiakban izzó majd füstölgő fadarabot dobtam el, de ott sem lett függőleges a végső szakasz.

Ugyanakkor matematikailag remekül közelítette meg Tartaglia a mozgás elemzését, hisz tudta, hogy 45 fokos kilövés esetén jut legmesszebbre az ágyúgolyó.

Niccolò Fontana (Tartaglia)

Giovanni Battista Benedetti

A reneszánsz szellemi kapcsolatainak, tanítványi vonulatának fontos láncszeme. Tartaglia tanítványának fő műve, az 1585-ben megjelent Diversarum Speculationum. Ennek a szabadesésről szóló fejezetei késztették Galileit ilyen jellegű kísérleteinek megtervezésére illetve elvégzésére. A könyv második kiadása, a Speculationum liber halála után, 1599-ben látott napvilágot. Stillman Drake szerint e könyv tartalmazza a Galilei előtti legfontosabb itáliai hozzájárulást a fizikai gondolatokhoz.

Benedetti Velencében született 1530. augusztus 14-én. A pármai herceg matematikusként alkalmazta, majd 1567-től haláláig, 1590. január 20-ig Savoya hercegének tanácsadója, udvari filozófusa volt Torinóban.

Matematikai képzettsége révén nemcsak Galileit előzte meg a szabadesésről vallott gondolataival, hanem hidrosztatikai meglátásaival Stevin, a perspektív ábrázolásban pedig Guido Ubaldo del Monte előfutára volt. Ha meg szeretnénk nézni az egész oldalas fametszetet, amely a perspektív ábrázoláshoz használható Benedetti-eszközt ábrázolja, mindössze 11 500 euróra van szükségünk. Ennyiért kapható a torinói korszakból, 1574-ből származó De gnomonum umbrarumque solarium usu liber című Benedetti-mű kézirata. A kevésbé ínyencek viszont 15 euróért az internetről letölthetik az egészet.3

Abban az időben ez a könyv volt a napórák készítéséről és használatáról szóló legátfogóbb tanulmány. (Benedetti Torinóban nemcsak napórákat, hanem szökőkutakat is tervezett.) A képalkotással már 1585-ös könyvében is foglalkozott. Leírta például azt, hogy egy 45 fokban állított tükör segítségével a lencse által alkotott képet meg tudjuk fordítani. Zenei ismeretei is voltak. 1563-ban egy levelében konszonáns hangzatokról, az azokat előállító levegőrezgésekről, hanghullámokról értekezett.

Mechanikai gondolatai közül még megemlítjük, hogy Benedetti ismerte az emelőtörvényt, a centrifugális erőt, s vallotta: ha a centrifugális erő megszűnik, akkor az adott test a körpálya érintőjének irányában távozik.

Giambattista della Porta

1535. november 15-én született Nápolytól 12 mérföldre délre, Vico Equensében. Ez a sokoldalú autodidakta tudós Nápolyban élt, ott is halt meg 1615. február 4-én. Valódi reneszánsz csodabogár volt. Drámaíróként a közismertebb, a kedveltebb comedia dell’arte műfajjal szemben a „tudós” drámát, a commedia eruditát művelte. Műszaki területen is alkotott: hidraulikával, hadmérnöki munkákkal, gépekkel, sőt gyógyszerekkel is foglalkozott. Ő írta kora legátfogóbb művét a titkosírásokról: De Furtivis Literarum Notis (1563) címmel. Ő készítette el az első ismert poligrafikus helyettesítő kódot – egy hússzor húszas táblázatot töltött fel négyszáz jellel.

Foglalkozott okkult filozófiával, asztrológiával, alkímiával, filozófiával, mezőgazdasággal (Villa, 1583–92), s szerencsénkre meteorológiával és matematikával, fizikával is. Érdekelték az arcberendezések, fejformák jellegzetességei is (De humana physiognomonia libri III, 1586), ő maga is híve volt annak az elképzelésnek, mely szerint az emberi és állati külső hasonlóságokból következtetni lehet az ember belső tulajdonságaira. A kötetet különösen érdekfeszítővé teszik a szerző szerint korrelációt mutató emberi és állati arcokat, fejeket bemutató fametszetek.4 Volt saját (magán) természettudományi múzeuma, sok ritka tárggyal és egzotikus növénnyel.

William Gilbert előtt írt a mágnességről. Számon tartják Portát mint a hőmérő, a holland távcső és a gőzerővel történő vízemelés feltalálóját. A vízemelésnél csak ismétli Heront, illetve közvetlen elődeit, nem alkotott újat sem az elméleti indoklásnál, sem pedig a kísérleti kivitelezés területén. Johann Mathesius említi 1562-ben, hogy a szász bányákban Heron módszerét használják vízemelésre. Heront ismételte V. Károly kapitánya, a tengerészeti találmányairól ismert Blasco de Garay is 1543. június 17-én. A kiáramló gőz erejével hajtotta 200 tonnás Trinity nevű hajóját, gabonát szállítván Colibre-ből Barcelonába.

Porta foglalkozott a színszórás elméletével és a sötétkamra képének megjavításával. Ez utóbbit úgy érte el, hogy gyűjtőlencsét tett a kamra nyílásához.

1580 táján ő alapította Európa első tudományos társaságát, a Accademia dei Segretit, közismertebb nevén az Otisit. Ő inspirálta a Római Akadémia (Accademia dei Lincei) 1603-as megalakulását; maga 1610-ben, Galilei 1611-ben lett a Hiúzok Akadémiájának tagja.

Giambattista della Porta
Giambattista della Porta: De humana physiognomonia libri IIII. (Vici Aequensis [Vico Equense] : Apud Iosephum Cacchium, 1586) Címlap
Giambattista della Porta: De humana physiognomonia libri IIII. (Vici Aequensis [Vico Equense] : Apud Iosephum Cacchium, 1586) 34. p.7
Giambattista della Porta: De humana physiognomonia libri IIII. (Vici Aequensis [Vico Equense] : Apud Iosephum Cacchium, 1586) 86. p."

A reneszánsz közvetlen hatása: Accademia del Cimento

Hamza Gábor (2007) a tudományos akadémiákról írt áttekintésében egyetlen mondattal elintézi ezt az akadémiát:

A Galileo Galilei tisztelői és részben követői által 1657-ben alapított Accademia del Cimento (Kísérleti Akadémia) csak tíz éven át, 1667-ig működött.

Igaz, hogy Vekerdi László tanulmányában is csak egyetlen mondatot írt erről a firenzei intézményről, de értékelő mondatot:

Az Accademia del Cimento a modern matematikai-kísérleti módszer szimbóluma.

Eötvös Loránd a Magyar Tudományos Akadémia 1899. május 7-i ünnepi közgyűlésén tartott elnöki megnyitó beszédében méltó helyére tette az Accademiát:

Egy rövid évtizedben egymást követve született meg az Accademia del Cimento Florenczben, a Royal Society Londonban és a párizsi akadémia. Az első, a fejedelmi kegy védelme alatt gyorsan felvirágzó, elmultával pedig már tíz-éves fennállás után elenyésző Accademia del Cimento, a közös czél elérésére irányított összetartó munkálkodásnak oly eszményi példáját adta, melyhez foghatót az emberi törekvések történetében csak ritkán, a tudományok történetében pedig egyáltalában nem találunk. Tagjai mintegy kivetkőzve saját egyéniségökből, egy tudományos egyénné forrtak össze s munkálkodásuk eredménye úgy áll ma előttünk, mint egy egyetlen hatalmas szellem alkotása. Az az értékes kötet, mely ez eredményeket magába foglalva 1667-ben jelent meg, szerzőjéül csak az akadémiát nevezi, elhallgatva azok neveit, kik hozzájárultak, úgy hogy ma a tudomány történetírója alig tudja megállapítani, kinek mi része volt benne. A tudományos feladatokat tekintve, melyeket ez a tudós testület magának kitűzött, figyelemreméltó, hogy javarészök a hőmérséklet, a nyomás és a sűrűség mérésére, azaz olyan kérdésekre vonatkozik, melyeknek megoldása a tudósok munkásságának tervszerű egyesítését napjainkig újra meg újra szükségessé tette.

Most már több forrásból is tudhatjuk, hogy a patrónus, Frederico Cesi halálával az 1603-ban Rómában alapított Accademia dei Lincei 1630-as felbomlása után a tudományos élet központja Nápolyba (Accademia degli Investiganti, 1650) és Firenzébe került. A firenzei akadémiát két Medici testvér: Leopold herceg és II. Ferdinánd toszkánai nagyherceg hívta életre. Galilei kísérleti módszerére alapoztak, azaz a természetfilozófiai elvek szigorú kísérleti ellenőrzése volt kitűzött fő céljuk. A címerükben megfogalmazott jelmondatuk: „Provando e riprovando”, azaz „Próbálkozás és ismételt próbálkozás”. Összejöveteleiket a csodálatos Palazzo Pitti épületében tartották. Nem volt hivatalos tagfelvétel. Az ülések kilenc állandó tagjáról tudunk: Giovanni Alfonso Borelli, Candido del Buono, Paolo del Buono, Lorenzo Magalotti (titkári minőségben), Alessandro Marsili, Antonio Oliva, Francesco Redi, Carlo Renaldini és Vincenzo Viviani.

Eötvös Loránd fent említett beszédének elején azon kesergett, hogy sokan lekicsinylő véleményükkel megkérdőjelezik a tudományos akadémiák létjogosultságát. Luciano Boschiero New South Wales-i kutató a firenzei akadémia kiadatlan levelezése és kéziratai alapján napjainkban is azt állítja, hogy a firenzeiek tényleges kísérleti módszerek alkalmazása helyett mindössze – az ő természetfilozófiai céljaikat és érdeklődésüket kielégítő – két kísérletet terveztek. Két tag foglalkozott hőtani kérdésekkel és egy csoport – köztük patrónusuk, Leopold Medici – mechanikai kérdésekkel. Azonban valószínűleg Martha Ornsteinnek az 1928-as doktori dolgozatában leírt véleménye tükrözi az igazságot (Orstein, 1963). Ő „a modern fizika kezdetének” nevezi a „kilencek” munkálkodását. Ornstein véleményét megerősíti az a tény, hogy az Accademia kiadványát még az 1700-as években is laboratóriumi kézikönyvként használták. A titkár, Lorenzo Magalotti szerkesztésében 1667-ben megjelent kötet címe: Saggi di Naturali Esperienze fatte nell’ Accademia del Cimento (szabad fordításban: A Kísérletek Akadémiájának természettudományi kísérleteiről írt tanulmányok. Úgy gondolom, helyesebb a Kísérletek Akadémiája vagy a Kísérlet Akadémiája elnevezés, mint a Hamza Gábor által írt Kísérleti Akadémia.)

A Saggi 1684-es angol fordításának szövege elérhető a következő webhelyen: Istituto e Museo di Storia della Scienza, Firenze – IMSS Digital Library. Ornstein pozitív véleményét erősíti Luciano Boschiero (2003) közelmúltban megjelent írása, továbbá Marco Beretta és Andrea Scotti kutatási terve (1997) is.

A Saggi 75 teljes oldalas metszetet tartalmaz, megmutatva a felhasznált kísérleti eszközöket és elrendezéseket. A mai napig megtalálható az Accademia tagjainak 300 (!) eszköze Firenzében a természettudományi múzeumban (Istituto e Museo di Storia della Scienza): a legkülönbözőbb méréstartományú és elrendezésű hőmérők, kvadránsok, hygrométerek, barométerek, fiolák és különböző edények, laboreszközök. Az akadémia kéziratai 49 kötetben 1700 oldal terjedelműek. Ebből tizenhárom kötet szól a kísérleti fizikáról: naplók, feljegyzések az ülésekről, a kísérletekről, vízfestmények az eszközökről. Tizenöt kötet tartalmazza azt a mintegy 1600 levelet, amelyek címzettjei közt van Isaac Newton, Marin Mersenne, Ismaël Boulliau, Niels Stensen és Gottfried Wilhelm Leibniz. A kéziratoknak eddig csak a tíz százalékát publikálták, s most folyik a teljes anyag digitalizálása. Több mint három évszázad elteltével így végre közkinccsé válik a fizikatörténet számos jelentős dokumentuma a reneszánsz és a modern tudomány közötti korszakból.

Az Accademia del Cimento címere

Irodalom

  1. Beretta, Marco–Scotti, Andrea (1997): Transactions of the Accademia del Cimento; A multi-task database Research Project Proposal.
  2. Bernal, John D. (1977): A fizika fejlődése Einsteinig. Gondolat, Budapest
  3. Boschiero, Luciano (2003): Natural Philosophical Contention Inside the Accademia del Cimento: the Properties and Effect of Heat and Cold. Annals of Science. 60, 4, 329–349. p.
  4. Dugas, René (1988): A History of Mechanics. Courier Dover Publications. Információ a Dover kiadásról.
  5. Eötvös Loránd (1899): A tudományos akadémiák létjoga. Természettudományi Közlöny 31, 358. füzet.
  6. Gingyikin, Szemjon Grigorjevics (2003): Történetek fizikusokról és matematikusokról. TypoTex Kiadó, Budapest.
  7. Hamza Gábor (2007): Áttekintés a külföldi nemzeti (tudományos) akadémiák struktúrájáról. Magyar Tudomány 167, 9, 1189–1198. p.
  8. Hoppe, Edmund (1926): Geschichte der Physik. Vieweg, Braunschweig.
  9. Orstein, Martha (1963): Role of Scientific Societies in the XVIIth Century. Archon Books, Hamden–London.
  10. Simonyi Károly (1981): A fizika kultúrtörténete. 2., bővített kiadás, Gondolat, Budapest.
  11. Vekerdi László (2000): Matematikai humanizmus. (Niccolò Tartaglia). Ponticulus Hungaricus IV., 11.
  12. Vekerdi László (2004): Természettudományos oktatás, tankönyvek, tudós társaságok a XVII–XVIII. században. : Reáliák a régi Akadémián. Neumann Kht., Budapest.
Simonyi Károly
(1916–2001)
mérnök, fizikus, kiemelkedő tudós-tanár
A fizika kultúrtörténete harmadik kiadásának címoldala